В каких четвертях располагается гипербола. Разбираемся с магией гиперболы. График логарифмической функции


Если к АРГУМЕНТУ функции добавляется константа, то происходит сдвиг (параллельный перенос) графика вдоль оси . Рассмотрим функцию и положительное число :

Правила :
1) чтобы построить график функции , нужно график сдвинуть ВДОЛЬ оси на единиц влево ;
2) чтобы построить график функции , нужно график сдвинуть ВДОЛЬ оси на единиц вправо .

Пример 6

Построить график функции

Берём параболу и сдвигаем её вдоль оси абсцисс на 1 единицу вправо :

«Опознавательным маячком» служит значение , именно здесь находится вершина параболы .

Теперь, думаю, ни у кого не возникнет трудностей с построением графика (демонстрационный пример начала урока) – кубическую параболу нужно сдвинуть на 2 единицы влево.

Вот ещё один характерный случай:

Пример 7

Построить график функции

Гиперболу (чёрный цвет) сдвинем вдоль оси на 2 единицы влево :

Перемещение гиперболы «выдаёт» значение, которое не входит в область определения функции . В данном примере , иуравнение прямой задаёт вертикальную асимптоту (красный пунктир) графика функции (красная сплошная линия). Таким образом, при параллельном переносе асимптота графика тоже сдвигается (что очевидно).

Вернёмся к тригонометрическим функциям:

Пример 8

Построить график функции

График синуса (чёрный цвет) сдвинем вдоль оси вдоль оси на влево :

Внимательно присмотримся к полученному красному графику …. Это в точности график косинуса ! По сути, мы получили геометрическую иллюстрацию формулы приведения , и перед вами, пожалуй, самая «знаменитая» формула, связывающая данные тригонометрические функции. График функции получается путём сдвига синусоиды вдоль оси на единиц влево (о чём уже говорилось на уроке Графики и свойства элементарных функций ). Аналогично можно убедиться в справедливости любой другой формулы приведения .

Рассмотрим композиционное правило, когда аргумент представляет собой линейную функцию: , при этом параметр «ка» не равен нулю или единице, параметр «бэ» – не равен нулю. Как построить график такой функции? Из школьного курса мы знаем, что, что умножение имеет приоритет перед сложением, поэтому, казалось бы, сначала график сжимаем/растягиваем/отображаем в зависимости от значения , а потом сдвигаем на единиц. Но здесь есть подводный камень, и корректный алгоритм таков:

Аргумент функции необходимо представить в виде и последовательно выполнить следующие преобразования:

1) График функции сжимаем (или растягиваем) к оси (от оси) ординат: (если , то график дополнительно следует отобразить симметрично относительно оси ).

2) График полученной функции сдвигаем влево (или вправо) вдоль оси абсцисс на (!!!) единиц , в результате чего будет построен искомый график .


Пример 9

Построить график функции

Представим функцию в виде и выполним следующие преобразования: синусоиду (чёрный цвет):

1) сожмём к оси в два раза: (синий цвет);
2) сдвинем вдоль оси на(!!!) влево : (красный цвет):

Пример вроде бы несложный, а пролететь с параллельным переносом легче лёгкого. График сдвигается на , а вовсе не на .

Продолжаем расправляться с функциями начала урока:

Пример 10

Построить график функции

Представим функцию в виде . В данном случае: Построение проведём в три шага. График натурального логарифма :

1) сожмём к оси в 2 раза: ;
2) отобразим симметрично относительно оси : ;
3) сдвинем вдоль оси на(!!!) вправо : :

Для самоконтроля в итоговую функцию можно подставить пару значений «икс», например, и свериться с полученным графиком.

В рассмотренных параграфах события происходили «горизонтально» – гармонь играет, ноги пляшут влево/вправо. Но похожие преобразования происходят и в «вертикальном» направлении – вдоль оси . Принципиальное отличие состоит в том, что связаны они не с АРГУМЕНТОМ, а с САМОЙ ФУНКЦИЕЙ.

Растяжение (сжатие) графика ВДОЛЬ оси ординат.
Симметричное отображение графика относительно оси абсцисс

Структура второй части статьи будет очень похожа.

1) Если ФУНКЦИЯ умножается на число , то происходитрастяжение её графика вдоль оси ординат .

Правило растянуть вдоль оси в раз.

2) Если ФУНКЦИЯ умножается на число , то происходит сжатие её графика вдоль оси ординат .

Правило : чтобы построить график функции , где , нужно график функции сжать вдоль оси в раз.

Догадайтесь, какую функцию я буду снова пытать =)

Пример 11

Построить графики функций .

Берём синусоиду за макушку/пятки:

И вытягиваем её вдоль оси в 2 раза:

Период функции не изменился и составляет , а вот значения (все, кроме нулевых) увеличились по модулю в два раза, что логично – ведь функция умножается на 2, и область её значений удваивается: .

Теперь сожмём синусоиду вдоль оси в 2 раза:

Аналогично, период не изменился, но область значений функции «сплющилась» в два раза: .

Нет, у меня нет какого-то пристрастного отношения к синусоиде, просто я хотел продемонстрировать, чем отличаются графики функций (Примеры №№1,3) от только что построенных собратьев . Постарайтесь ещё раз проанализировать и качественнее понять эти элементарные случаи. Даже минимальные знания о преобразованиях графиков окажут вам неоценимую помощь в ходе решения других задач высшей математики! . Случаи

Рассмотрим функцию y=k/y. Графиком этой функции является линия, называемая в математике гиперболой. Общий вид гиперболы, представлен на рисунке ниже. (На графике представлена функция y равно k разделить на x, у которой k равно единице.)

Видно, что график состоит из двух частей. Эти части называют ветвями гиперболы. Стоит отметить также, что каждая ветвь гиперболы подходит в одном из направлений все ближе и ближе к осям координат. Оси координат в таком случае называют асимптотами.

Вообще любые прямые линии, к которым бесконечно приближается график функции, но не достигает их, называются асимптотами. У гиперболы, как и у параболы, есть оси симметрии. Для гиперболы, представленной на рисунке выше, это прямая y=x.

Теперь разберемся с двумя общими случаями гипербол. Графиком функции y = k/x, при k ≠0, будет являться гипербола, ветви которой расположены либо в первом и третьем координатных углах, при k>0, либо во втором и четвертом координатных углах, при k<0.

Основные свойства функции y = k/x, при k>0

График функции y = k/x, при k>0

5. y>0 при x>0; y6. Функция убывает как на промежутке (-∞;0), так и на промежутке (0;+∞).

10. Область значений функции два открытых промежутка (-∞;0) и (0;+∞).

Основные свойства функции y = k/x, при k<0

График функции y = k/x, при k<0

1. Точка (0;0) центр симметрии гиперболы.

2. Оси координат - асимптоты гиперболы.

4. Область определения функции все х, кроме х=0.

5. y>0 при x0.

6. Функция возрастает как на промежутке (-∞;0), так и на промежутке (0;+∞).

7. Функция не ограничена ни снизу, ни сверху.

8. У функции нет ни наибольшего, ни наименьшего значений.

9. Функция непрерывна на промежутке (-∞;0) и на промежутке (0;+∞). Имеет разрыв в точке х=0.

Данный методический материал носит справочный характер и относится к широкому кругу тем. В статье приведен обзор графиков основных элементарных функций и рассмотрен важнейший вопрос – как правильно и БЫСТРО построить график . В ходе изучения высшей математики без знания графиков основных элементарных функций придётся тяжело, поэтому очень важно вспомнить, как выглядят графики параболы, гиперболы, синуса, косинуса и т.д., запомнить некоторые значения функций. Также речь пойдет о некоторых свойствах основных функций .

Я не претендую на полноту и научную основательность материалов, упор будет сделан, прежде всего, на практике – тех вещах, с которыми приходится сталкиваться буквально на каждом шагу, в любой теме высшей математики . Графики для чайников? Можно сказать и так.

По многочисленным просьбам читателей кликабельное оглавление :

Кроме того, есть сверхкраткий конспект по теме
– освойте 16 видов графиков, изучив ШЕСТЬ страниц!

Серьёзно, шесть, удивился даже я сам. Данный конспект содержит улучшенную графику и доступен за символическую плaту , демо-версию можно посмотреть . Файл удобно распечатать, чтобы графики всегда были под рукой. Спасибо за поддержку проекта!

И сразу начинаем:

Как правильно построить координатные оси?

На практике контрольные работы почти всегда оформляются студентами в отдельных тетрадях, разлинованных в клетку. Зачем нужна клетчатая разметка? Ведь работу, в принципе, можно сделать и на листах А4. А клетка необходима как раз для качественного и точного оформления чертежей.

Любой чертеж графика функции начинается с координатных осей .

Чертежи бывают двухмерными и трехмерными.

Сначала рассмотрим двухмерный случай декартовой прямоугольной системы координат :

1) Чертим координатные оси. Ось называется осью абсцисс , а ось – осью ординат . Чертить их всегда стараемся аккуратно и не криво . Стрелочки тоже не должны напоминать бороду Папы Карло.

2) Подписываем оси большими буквами «икс» и «игрек». Не забываем подписывать оси .

3) Задаем масштаб по осям: рисуем ноль и две единички . При выполнении чертежа самый удобный и часто встречающийся масштаб: 1 единица = 2 клеточки (чертеж слева) – по возможности придерживайтесь именно его. Однако время от времени случается так, что чертеж не вмещается на тетрадный лист – тогда масштаб уменьшаем: 1 единица = 1 клеточка (чертеж справа). Редко, но бывает, что масштаб чертежа приходится уменьшать (или увеличивать) еще больше

НЕ НУЖНО «строчить из пулемёта» …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, …. Ибо координатная плоскость – не памятник Декарту, а студент – не голубь. Ставим ноль и две единицы по осям . Иногда вместо единиц удобно «засечь» другие значения, например, «двойку» на оси абсцисс и «тройку» на оси ординат – и эта система (0, 2 и 3) тоже однозначно задаст координатную сетку.

Предполагаемые размеры чертежа лучше оценить еще ДО построения чертежа . Так, например, если в задании требуется начертить треугольник с вершинами , , , то совершенно понятно, что популярный масштаб 1 единица = 2 клеточки не подойдет. Почему? Посмотрим на точку – здесь придется отмерять пятнадцать сантиметров вниз, и, очевидно, что чертеж не вместится (или вместится еле-еле) на тетрадный лист. Поэтому сразу выбираем более мелкий масштаб 1 единица = 1 клеточка.

Кстати, о сантиметрах и тетрадных клетках. Правда ли, что в 30 тетрадных клетках содержится 15 сантиметров? Отмерьте в тетради для интереса 15 сантиметров линейкой. В СССР, возможно, это было правдой… Интересно отметить, что если отмерить эти самые сантиметры по горизонтали и вертикали, то результаты (в клетках) будут разными! Строго говоря, современные тетради не клетчатые, а прямоугольные. Возможно, это покажется ерундой, но, чертить, например, окружность циркулем при таких раскладах очень неудобно. Если честно, в такие моменты начинаешь задумываться о правоте товарища Сталина, который отправлял в лагеря за халтуру на производстве, не говоря уже об отечественном автомобилестроении, падающих самолетах или взрывающихся электростанциях.

К слову о качестве, или краткая рекомендация по канцтоварам. На сегодняшний день большинство тетрадей в продаже, плохих слов не говоря, полное гомно. По той причине, что они промокают, причём не только от гелевых, но и от шариковых ручек! На бумаге экономят. Для оформления контрольных работ рекомендую использовать тетради Архангельского ЦБК (18 листов, клетка) или «Пятёрочку», правда, она дороже. Ручку желательно выбрать гелевую, даже самый дешевый китайский гелевый стержень намного лучше, чем шариковая ручка, которая то мажет, то дерёт бумагу. Единственной «конкурентоспособной» шариковой ручкой на моей памяти является «Эрих Краузе». Она пишет чётко, красиво и стабильно – что с полным стержнем, что с практически пустым.

Дополнительно : вИдение прямоугольной системы координат глазами аналитической геометрии освещается в статье Линейная (не) зависимость векторов. Базис векторов , подробную информацию о координатных четвертях можно найти во втором параграфе урока Линейные неравенства .

Трехмерный случай

Здесь почти всё так же.

1) Чертим координатные оси. Стандарт: ось аппликат – направлена вверх, ось – направлена вправо, ось – влево вниз строго под углом 45 градусов.

2) Подписываем оси.

3) Задаем масштаб по осям. Масштаб по оси – в два раза меньше, чем масштаб по другим осям . Также обратите внимание, что на правом чертеже я использовал нестандартную «засечку» по оси (о такой возможности уже упомянуто выше) . С моей точки зрения, так точнее, быстрее и эстетичнее – не нужно под микроскопом выискивать середину клетки и «лепить» единицу впритык к началу координат.

При выполнении трехмерного чертежа опять же – отдавайте приоритет масштабу
1 единица = 2 клетки (чертеж слева).

Для чего нужны все эти правила? Правила существуют для того, чтобы их нарушать. Чем я сейчас и займусь. Дело в том, что последующие чертежи статьи будут выполнены мной в Экселе, и, координатные оси будут выглядеть некорректно с точки зрения правильного оформления. Я бы мог начертить все графики от руки, но чертить их на самом деле жуть как неохота Эксель их начертит гораздо точнее.

Графики и основные свойства элементарных функций

Линейная функция задается уравнением . График линейной функций представляет собой прямую . Для того, чтобы построить прямую достаточно знать две точки.

Пример 1

Построить график функции . Найдем две точки. В качестве одной из точек выгодно выбрать ноль.

Если , то

Берем еще какую-нибудь точку, например, 1.

Если , то

При оформлении заданий координаты точек обычно сводятся в таблицу:


А сами значения рассчитываются устно или на черновике, калькуляторе.

Две точки найдены, выполним чертеж:


При оформлении чертежа всегда подписываем графики .

Не лишним будет вспомнить частные случаи линейной функции:


Обратите внимание, как я расположил подписи, подписи не должны допускать разночтений при изучении чертежа . В данном случае крайне нежелательно было поставить подпись рядом с точкой пересечения прямых , или справа внизу между графиками.

1) Линейная функция вида () называется прямой пропорциональностью. Например, . График прямой пропорциональности всегда проходит через начало координат. Таким образом, построение прямой упрощается – достаточно найти всего одну точку.

2) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции строится сразу, без нахождения всяких точек. То есть, запись следует понимать так: «игрек всегда равен –4, при любом значении икс».

3) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции также строится сразу. Запись следует понимать так: «икс всегда, при любом значении игрек, равен 1».

Некоторые спросят, ну зачем вспоминать 6 класс?! Так-то оно, может и так, только за годы практики я встретил добрый десяток студентов, которых ставила в тупик задача построения графика вроде или .

Построение прямой – самое распространенное действие при выполнении чертежей.

Прямая линия детально рассматривается в курсе аналитической геометрии, и желающие могут обратиться к статье Уравнение прямой на плоскости .

График квадратичной, кубической функции, график многочлена

Парабола. График квадратичной функции () представляет собой параболу. Рассмотрим знаменитый случай:

Вспоминаем некоторые свойства функции .

Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы. Почему это так, можно узнать из теоретической статьи о производной и урока об экстремумах функции . А пока рассчитываем соответствующее значение «игрек»:

Таким образом, вершина находится в точке

Теперь находим другие точки, при этом нагло пользуемся симметричностью параболы. Следует заметить, что функция не является чётной , но, тем не менее, симметричность параболы никто не отменял.

В каком порядке находить остальные точки, думаю, будет понятно из итоговой таблицы:

Данный алгоритм построения образно можно назвать «челноком» или принципом «туда-сюда» с Анфисой Чеховой.

Выполним чертеж:


Из рассмотренных графиков вспоминается еще один полезный признак:

Для квадратичной функции () справедливо следующее:

Если , то ветви параболы направлены вверх .

Если , то ветви параболы направлены вниз .

Углублённые знания о кривой можно получить на уроке Гипербола и парабола .

Кубическая парабола задается функцией . Вот знакомый со школы чертеж:


Перечислим основные свойства функции

График функции

Он представляет собой одну из ветвей параболы . Выполним чертеж:


Основные свойства функции :

В данном случае ось является вертикальной асимптотой для графика гиперболы при .

Будет ГРУБОЙ ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой .

Также односторонние пределы , говорят нам о том, что гипербола не ограничена сверху и не ограничена снизу .

Исследуем функцию на бесконечности: , то есть, если мы начнем уходить по оси влево (или вправо) на бесконечность, то «игреки» стройным шагом будут бесконечно близко приближаться к нулю, и, соответственно, ветви гиперболы бесконечно близко приближаться к оси .

Таким образом, ось является горизонтальной асимптотой для графика функции, если «икс» стремится к плюс или минус бесконечности.

Функция является нечётной , а, значит, гипербола симметрична относительно начала координат. Данный факт очевиден из чертежа, кроме того, легко проверяется аналитически: .

График функции вида () представляет собой две ветви гиперболы .

Если , то гипербола расположена в первой и третьей координатных четвертях (см. рисунок выше).

Если , то гипербола расположена во второй и четвертой координатных четвертях .

Указанную закономерность места жительства гиперболы нетрудно проанализировать с точки зрения геометрических преобразований графиков .

Пример 3

Построить правую ветвь гиперболы

Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело:

Выполним чертеж:


Не составит труда построить и левую ветвь гиперболы, здесь как раз поможет нечетность функции. Грубо говоря, в таблице поточечного построения мысленно добавляем к каждому числу минус, ставим соответствующие точки и прочерчиваем вторую ветвь.

Детальную геометрическую информацию о рассмотренной линии можно найти в статье Гипербола и парабола .

График показательной функции

В данном параграфе я сразу рассмотрю экспоненциальную функцию , поскольку в задачах высшей математики в 95% случаев встречается именно экспонента.

Напоминаю, что – это иррациональное число: , это потребуется при построении графика, который, собственно, я без церемоний и построю. Трёх точек, пожалуй, хватит:

График функции пока оставим в покое, о нём позже.

Основные свойства функции :

Принципиально так же выглядят графики функций , и т. д.

Должен сказать, что второй случай встречается на практике реже, но он встречается, поэтому я счел нужным включить его в данную статью.

График логарифмической функции

Рассмотрим функцию с натуральным логарифмом .
Выполним поточечный чертеж:

Если позабылось, что такое логарифм, пожалуйста, обратитесь к школьным учебникам.

Основные свойства функции :

Область определения :

Область значений: .

Функция не ограничена сверху: , пусть и медленно, но ветка логарифма уходит вверх на бесконечность.
Исследуем поведение функции вблизи нуля справа: . Таким образом, ось является вертикальной асимптотой для графика функции при «икс» стремящемся к нулю справа.

Обязательно нужно знать и помнить типовое значение логарифма : .

Принципиально так же выглядит график логарифма при основании : , , (десятичный логарифм по основанию 10) и т.д. При этом, чем больше основание, тем более пологим будет график.

Случай рассматривать не будем, что-то я не припомню, когда последний раз строил график с таким основанием. Да и логарифм вроде в задачах высшей математики ооочень редкий гость.

В заключение параграфа скажу еще об одном факте: Экспоненциальная функция и логарифмическая функция – это две взаимно обратные функции . Если присмотреться к графику логарифма, то можно увидеть, что это – та же самая экспонента, просто она расположена немного по-другому.

Графики тригонометрических функций

С чего начинаются тригонометрические мучения в школе? Правильно. С синуса

Построим график функции

Данная линия называется синусоидой .

Напоминаю, что «пи» – это иррациональное число: , и в тригонометрии от него в глазах рябит.

Основные свойства функции :

Данная функция является периодической с периодом . Что это значит? Посмотрим на отрезок . Слева и справа от него бесконечно повторяется точно такой же кусок графика.

Область определения : , то есть для любого значения «икс» существует значение синуса.

Область значений: . Функция является ограниченной : , то есть, все «игреки» сидят строго в отрезке .
Такого не бывает: или , точнее говоря, бывает, но указанные уравнения не имеют решения.


Здравствуйте, дорогие студенты вуза Аргемоны! Приветствую вас на очередной лекции по магии функций и интегралов.

Сегодня мы поговорим о гиперболе. Начнём от простого. Самый простой вид гиперболы:

Эта функция, в отличии от прямой в её стандарных видах, имеет особенность. Как мы знаем, знаменатель дроби не может равняться нулю, потому что на ноль делить нельзя.
x ≠ 0
Отсюда делаем вывод, что областью определения является вся числовая прямая, кроме точки 0: (-∞; 0) ∪ (0; +∞).

Если х стремится к 0 справа (записывается вот так: х->0+), т.е. становится очень-очень маленьким, но при этом остаётся положительным, то у становится очень-очень большим положительным (y->+∞).
Если же х стремится к 0 слева (x->0-), т.е. становится по модулю тоже очень-очень маленьким, но остаётся при этом отрицательным, то у также будет отрицательным, но по модулю будет очень большим (y->-∞).
Если же х стремится в плюс бесконечность (x->+∞), т.е. становится очень большим положительным числом, то у будет становиться всё более и более меньшим положительным числом, т.е. будет стремиться к 0, оставаясь всё время положительным (y->0+).
Если же х стремится в минус бесконечность (x->-∞), т.е. становится большим по модулю, но отрицательным числом, то у будет тоже отрицательным всегда числом, но маленьким по модулю (y->0-).

У, как и х, не может принимать значения 0. Он только к нулю стремится. Поэтому множество значений такое же, как и область определения: (-∞; 0) ∪ (0; +∞).

Исходя из этих рассуждений, можно схематически нарисовать график функции

Видно, что гипербола состоит из двух частей: одна находится в 1-м координатном углу, где значения х и у положительные, а вторая часть — в третьем координатном углу, где значения х и у отрицательные.
Если двигаться от -∞ к +∞, то мы видим, что функция наша убывает от 0 до -∞, потом происходит резкий скачок (от -∞ до +∞) и начинается вторая ветка функции, которая тоже убывает, но от +∞ до 0. То есть, эта гипербола убывающая.

Если совсем чуть-чуть изменить функцию: воспользоваться магией минуса,

(1")

То функция чудесным образом переместится из 1 и 3 координатных четвертей во 2-ю и 4-ю четверти и станет возрастающей.

Напомню, что функция является возрастающей , если для двух значений х 1 и х 2 ,таких, что х 1 <х 2 , значения функции находятся в том же отношении f(х 1) < f(х 2).
И функция будет убывающей , если f(х 1) > f(х 2) для тех же значений х.

Ветви гиперболы приближаются к осям, но никогда их не пересекают. Такие линии, к которым приближается график функции, но никогда их не пересекает, называются ассимптотой данной функции.
Для нашей функции (1) ассимптотами являются прямые х=0 (ось OY, вертикальная ассимптота) и у=0 (ось OX, горизонтальная ассимптота).

А теперь давайте немного усложним простейшую гиперболу и посмотрим, что произойдёт с графиком функции.

(2)

Всего-то добавили константу "а" в знаменатель. Добавление какого-то числа в знаменатель в качестве слагаемого к х означает перенос всей "гиперболической конструкции" (вместе с вертикальной ассимптотой) на (-a) позиций вправо, если а — отрицательное число, и на (-а) позиций влево, если а — положительное число.

На левом графике к х добавляется отрицательная константа (а<0, значит, -a>0), что вызывает перенос графика вправо, а на правом графике — положительная константа (a>0), благодаря которой график переносится влево.

А какая магия может повлиять на перенос "гиперболической конструкции" вверх или вниз? Добавление константы-слагаемой к дроби.

(3)

Вот теперь вся наша функция (обе веточки и горизонтальная ассимптота) поднимется на b позиций вверх, если b — положительное число, и опустится на b позиций вниз, если b — отрицательное число.

Обратите внимание, что ассимптоты передвигаются вместе с гиперболой, т.е. гиперболу (обе её ветки) и обе её ассимптоты надо обязательно рассматривать как неразрывную конструкцию, которая едино передвигается влево, вправо, вверх или вниз. Очень приятное ощущение, когда одним добавлением какого-то числа можно заставлять функцию целиком двигаться в любую сторону. Чем не магия, овладеть которой можно очень легко и направлять её по своему усмотрению в нужную сторону?
Кстати, так управлять можно движением любой функции. На следующих уроках мы это умение будем закреплять.

Перед тем как задать вам домашнее задание, я хочу обратить ваше внимание ещё вот на такую функцию

(4)

Нижняя веточка гиперболы перемещается из 3-го координатного угла вверх — во второй, в тот угол, где значение у положительное, т.е. эта веточка отражается симметрично относительно оси ОХ. И теперь мы получаем чётную функцию.

Что значит "чётная функция"? Функция называется чётной , если выполняется условие: f(-x)=f(x)
Функция называется нечётной , если выполняется условие: f(-x)=-f(x)
В нашем случае

(5)

Всякая чётная функция симметрична относительно оси OY, т.е. пергамент с рисунком графика можно сложить по оси OY, и две части графика точно совпадут друг с другом.

Как видим, эта функция тоже имеет две ассимптоты — горизонтальную и вертикальную. В отличие от рассмотренных выше функций, эта функция является на одной своей части возрастающей, на другой — убывающей.

Попробуем поруководить теперь этим графиком, прибавляя константы.

(6)

Вспомним, что прибавление константы в качестве слагаемого к "х" вызывает перемещение всего графика (вместе с вертикальной ассимптотой) по горизонтали, вдоль горизонтальной ассимптоты (влево или вправо в зависимости от знака этой константы).

(7)

А добавление константы b в качестве слагаемого к дроби вызывает перемещение графика вверх или вниз. Всё очень просто!

А теперь попробуйте сами поэкспериментировать с такой магией.

Домашнее задание 1.

Каждый берёт для своих экспериментов две функции: (3) и (7).
а=первой цифре вашего ЛД
b=второй цифре вашего ЛД
Попробуйте добраться до магии этих функций, начиная с простейшей гиперболы, как я это делала на уроке, и постепенно добавляя свои константы. Функцию (7) уже можете моделировать, исходя из конечного вида функции (3). Укажите области определения, множество значений, ассимптоты. Как ведут себя функции: убывают, возрастают. Чётные — нечётные. В общем, попробуйте провести такое же исследование, как было на уроке. Возможно, вы найдете что-то ещё, о чём я забыла рассказать.

Кстати, обе ветки самой простейшей гиперболы (1) симметричны относительно биссектрисы 2 и 4 координатных углов. А теперь представьте, что гипербола стала вращаться вокруг этой оси. Получим вот такую симпатичную фигуру, которой можно найти применение.

Задание 2 . Где можно использовать данную фигуру? Попробуйте нарисовать фигуру вращения для функции (4) относительно её оси симметрии и порассуждайте, где такая фигура может найти применение.

Помните, как мы в конце прошлого урока получили прямую с выколотой точкой? И вот последнее задание 3 .
Построить график вот такой функции:


(8)

Коэффициенты a, b — такие же, как в задании 1.
с=третьей цифре вашего ЛД или a-b, если ваше ЛД двузначное.
Небольшая подсказка: сначала полученную после подстановки цифр дробь надо упростить, и затем вы получите обычную гиперболу, которую и надо построить, но в конце надо учесть область определения исходного выражения.







2024 © blagosc.ru.